Investigation: How does sea surface temperature change with latitude?

INTRODUCTION:

The following table shows Advanced High Resolution Radiometer (AVHRR) satellite Sea Surface Temperature (SST) measurements taken in July 1997 for several different latitudes along 135° West Longitude, in the Pacific Ocean.

DATA:

Sea Surface Tempe	erature at 135°West
Latitude	<u>SST</u>
50 ° South	10.9 °C
40 $^{\circ}$ South	12.4 °C
30 ° South	18.9 °C
20 $^{\circ}$ South	25.5 °C
10 $^{\circ}$ South	27.4 °C
0° (the equator)	28.8 °C
10 ° North	27.9 °C
20 ° North	23.4 °C
30 ° North	21.6 °C
40 ° North	16.8 °C
50 ° North	12.9 °C

PROCEDURES:

Make a line graph of the data using a full sheet of graph paper. Calibrate the y-axis "SST in Degrees Celsius," running from 0°C up to 35°C. Calibrate the x-axis "Degrees of Latitude," from 90°S to 90°N (don't forget the 0° point in the middle, representing the Equator).

ANALYSIS:

A. Describe the general shape of your graph.

B. Summarize the meaning of the graph in your own words.

C. a. What is the *actual* range of SST's in the southern hemisphere (from 0° to 50° S)? b. Calculate the *actual* average rate of SST change per 10° of latitude.

D. Extrapolate both ends of your graph to meet the north and south poles, 90°N to 90°S. Fill in the *predicted* SST's for the following latitudes:

a. 60° S	e. 60° N
b. 70° S	f. 70 ^o N
c. 80° S	g. 80º N
d. 90° S	h. 90º N

E. a. What is the *predicted* range of SST's in the southern hemisphere (from 0° to 90° S)? b. Calculate the *predicted* average rate of SST change per 10° of latitude.

F. How do your calculations for the actual and predicted rates of SST change per 10° of latitude compare? G. San Francisco is at 38°N, and San Diego is at 32°N latitude. If the SST at San Diego was 20°C, predict the SST for San Francisco. Show your work. Did you use your actual or predicted rate of SST change? Why?

CREDITS:

Adapted from "Physical Oceanography from Space," JPL-PODAAC, http://podaac-www.jpl.nasa.gov/kids/ index.html

SST v Latitude (@ 135N)

